
www.itemis.com

AGL: When a Regular Expression is not enough

Dr. David H. Akehurst

www.itemis.com

AGL: When a Regular Expression is not enough
Overview

● Executive Summary
● Motivation
● What already exists?
● What is AGL?
● API
● Performance
● Problems
● Conclusion
● Demo
● Questions / Discussion

www.itemis.com3

AGL: When a Regular Expression is not enough
Executive Summary

● Maturity
○ There are bugs, issues, and things-in-progress
○ I am currently the only user I know of
○ It is / has been used in commercial projects

● AGL is a runtime parser generator
○ Parser is generated at runtime no code generation

● Scan-on-demand - No need to worry about reserved words
○ There is no pre-parse scan step
○ Tokens are scanned for during parse time when they are needed

● GLR-based (with variations/extensions) - No rule restrictions
○ No need to worry about left-recursive or right-recursive rules or hidden-left

recursion, etc
○ Ambiguity is permitted, but will slow down the parse.

● Support for grammar composition
○ via extension/inheritance
○ via embedding one grammar in another

● Implemented using kotlin multiplatform
○ Executes on (and usable with) JVM, JavaScript, (Web-assembly, and native code)

● Integration with Ace and Monaco Javascript Editors

www.itemis.com4

AGL: When a Regular Expression is not enough
If you would rather read and play than listen

● Source Code
○ https://github.com/dhakehurst/net.akehurst.language

● Online Demo (older version)
○ https://info.itemis.com/demo/agl/editor

● Article
○ https://medium.com/@dr.david.h.akehurst/agl-your-dsl-in-the-web-c9f54595691b

● Documentation
○ https://medium.com/@dr.david.h.akehurst/a-kotlin-multi-platform-parser-usable-fro

m-a-jvm-or-javascript-59e870832a79

www.itemis.com5

AGL: When a Regular Expression is not enough
Motivation: History

● Started pre 2007(ish) consequence of modularising OCL (published 2008)
○ Implemented something, tried to publish, rejected because basically I

knew nothing about parser algorithms.

● ANTLR v4 came out soon after, I thought that would be the solution as it
implemented similar ideas (grammar inheritance).
○ Unfortunately not. (No hidden left recursion, grammar inheritance is

insufficient, up-front code-generation step)

● Christmas 2014 I was bored, tried again.
○ Learnt lots more about parser theory.
○ Simple self motivation to solve/complete something I once started

● Research project at itemis required use of web-based DSL.
○ Switched to Kotlin.

● Many holidays, weekends, evenings later…….AGL

www.itemis.com6

AGL: When a Regular Expression is not enough
Motivation: Use cases for AGL

● Text language embedded in a Graphical language
○ I need more than a Regular Expression
○ But I don’t want to “generate” a parser up front

demo for web
prototype of

www.itemis.com7

AGL: When a Regular Expression is not enough
Motivation: Use cases for AGL

● I have short sentences (not 1000s of lines and multiple files)
○ maybe queries in a web application

research into query
languages related to:

www.itemis.com8

AGL: When a Regular Expression is not enough
Motivation: Use cases for AGL

● Parsing Matlab Script to create graphical icons

www.itemis.com9

AGL: When a Regular Expression is not enough
Motivation: Use cases for AGL

● I want to change my language definition at runtime

www.itemis.com10

AGL: When a Regular Expression is not enough
Motivation: Use cases for AGL

● I want families of languages
○ Text in UML diagrams
○ Modularising OCL
○ Graphviz / DOT - XML embedded in graph description

www.itemis.com11

AGL: When a Regular Expression is not enough
Motivation: The requirements I set myself

1. Runtime build: The parser should be built at runtime. I.e. no separate generate-code
step or separate tool for generating the parser.

2. No rule limitations: Writing the grammar rules should be as intuitive as possible. i.e. it
should be possible to write any pattern of grammar rules, without having to worry about
limitations regarding left, right, or hidden recursion. I.e. the parser should handle any
valid EBNF-like grammar.

3. No reserved words: No limitation regarding reserved words. I.e. a grammar can be
defined where key-words can be used as variable names.

4. Lists of items: The grammar language should have support for parsing lists of items
that are represented as lists in the resulting parse tree.

5. Grammar composition: The parser should support families of languages. I.e. it should
be possible to compose different grammars to form a new grammar (other than by copy
and paste).

6. Any goal rule: The parser should support parsing a sentence to match any of the given
rules of the grammar. I.e. any rule can be used as the ‘goal’ rule.

7. Multi-platform: The parser should be executable on, as a minimum, a Java Virtual
Machine (JVM) and a JavaScript platform. Ideally on other platforms also.

8. Performant: The parser must be performant enough to be usable. I.e. parsing a page
of text with an unambiguous grammar should take under 1 second.

1-4: Ease of
Use

5-6: Language
Families

7: JS & JVM
Kotlin is Awesome

8: Low bar

www.itemis.com12

AGL: When a Regular Expression is not enough
What already exists?: Existing Parsers

● Long list on Wikipedia - many with no available implementation

● Parser Combinators
○ Built at runtime
○ Typically LL and other restrictions on grammars

● ANTLR, Yacc/Lex, etc
○ All require pre-compile time code generation

● JSGLR, LaJa, and many others
○ All fall short, either require a scanner, rule restrictions, not JVM/JS

compatible, etc

● Nothing implements grammar composition other than by
extension/inheritance

www.itemis.com13

AGL: When a Regular Expression is not enough
What already exists?: Algorithms

● LL
○ Rule restrictions
○ Even LL(*) cannot handle hidden left-recursion
○ GLL decreases restrictions
○ Papers on scannerless GLL

● Earley / Chart parsing
○ Not widely used
○ (Could do with further investigation)

● LR
○ LR(1) least restrictive (memory issues for implementation)
○ GLR decreases restrictions (performance traps)
○ Papers on scannerless GLR
○ RNGLR/BRNGLR, etc - no implementation found

● Others
○ Left-corner, head-corner, etc

● Most of the recent algorithm work does not seem to have left academia !

www.itemis.com14

AGL: When a Regular Expression is not enough
What is AGL?: GLR + modifications

● Move lookahead computation to parse-time (partially)
○ Rather than pre-computed in the automaton
○ Speeds up automaton generation
○ Slows down parse-time

● Compute automaton states on-demand
○ Reduces memory use to only what is required
○ Eliminates needs for time spent on up-front generation of the automaton

● Split reduce action into first and the rest
○ Similar to Left-corner parsing
○ Reduces stack length when parsing List rules (args = [expr / ‘,’]+)

● Scan-on-demand

● Enable embedded grammars
○ Possible because lookahead is partially computed at parse-time

www.itemis.com15

AGL: When a Regular Expression is not enough
API - Kotlin

val p = Agl.processor("""
 <grammar>
""")

val tree = p.parse("<sentence>")

Define grammar using a String

Parse a sentence

www.itemis.com16

AGL: When a Regular Expression is not enough
API - Java

String grammarStr = ...
LanguageProcessor p = Agl.INSTANCE.parse(grammarStr,null,null);

String sentence = ...
SharedPackedParseTree tree = p.parse(sentence);

www.itemis.com17

AGL: When a Regular Expression is not enough
API - JavaScript

const grammarStr = ...
const proc = Agl.processorFromString(grammarStr);

const sentence = ...
const tree = proc.parse(sentence);

www.itemis.com18

AGL: When a Regular Expression is not enough
Performance

● Its OK, its usable - see demo

● Nowhere near as fast as ANTLR V4
○ Only thing that I have been able to realistically compare with
○ Others either have no available implementation
○ Or no library of grammars

● Comparison and performance improvements are in progress

● Performance impacted by grammar rules
○ 5 different versions of Java 8 grammar
○ ANTLR execution of ANTLR-optimised by far the fastest
○ AGL-optimised fastest AGL execution
○ AGL executes ANTLR-std faster than ANTLR does

www.itemis.com19

AGL: When a Regular Expression is not enough
Problems

● Time to work on it

● Finding other parser generators to compare with

● A performance bottleneck is, Ironically
○ Scanning, use of Regular Expression engine on JS
○ There is no ‘lookingAt’ function like there is in JVM
○ Workarounds are not ideal or slower
○ Writing own regex parser is slower - I tried!

● Reuse of automaton (parts) for different goal rules

● Interesting side-effects of scan-on-demand
○ Whitespace really is optional !
○ “classA” parses same as “class A”

www.itemis.com20

AGL: When a Regular Expression is not enough
Conclusion

Met my initial requirements - Mostly

1. Runtime build: Yes

2. No rule limitations: Yes - GLR + my variations

3. No reserved words: Yes - Scan-on-demand

4. Lists of items: Yes - my List rules

5. Grammar composition: Yes - extension and embedding

6. Any goal rule: Only in the API - separate automaton for each

7. Multi-platform: Yes - thanks to Awesome Kotlin

8. Performant: Partial - useable but was hoping for better - may get there

www.itemis.com23

AGL: When a Regular Expression is not enough
Demo description

● It is all executed in the browser

● There is NO server (other than to serve the .html, .css, .js files)

● The Ace and Monaco Integrations are separate libraries

● The demo shows:
○ Writing a sentence in a given language with

■ Syntax highlighting - based on scan initially, then a parse tree if
available

■ Autocomplete
■ A parse tree displayed
■ A simple auto constructed ASM

○ Modify (at runtime) the grammar and the highlighting rules
○ Or just select a different grammar (a few built in examples)
○ Or write your own from scratch

www.itemis.com24

AGL: When a Regular Expression is not enough
Questions

My questions

● Is it useful or a waste of my time to continue?

● Suggestions of similar/useful research I may have missed?
● Suggestions of similar implementations to compare with?

● Any grammars you would like me to test it with?

● Anyone got a use-case or application that would find this useful?
● Anyone got a commercial project that wants to use it?

