
HDLs Hardware Description Languages  
	 as  
	 	 DSLs Domain Specific Languages

Luca De Santis, June 2021, for Strumenta Community

1



Introduction
▪ In this presentation we are going to talk about hardware description 

languages in the perspective of language design, in syntactic and 
semantic aspects

▪We will introduce the context in which HDLs are used and their 

typical features

▪We will also introduce some trends today and a couple of proposals
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What is a  
Hardware Description Language

A HDL is a (formal) language aimed to represent


▪ Structure

▪ Behavior


of (digital) electronic systems, with the purpose of


▪ Simulate

▪ Synthesize
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resembles

Structure Class/Objects hierarchy

Behavior Functions, methods

Simulation Interpretation

Synthesis Translation

Note that:



Levels of description
Level Tools and 

Methodology
Languages Comment

Algorithmic High-Level Synthesis C/C++, System C, 
Matlab

Successful in DSP, inefficient 
in the general case

ISA 

(Instruction Set 
Architecture)

ISA/processor 
synthesis

DSLs (LISA), System-
C

A re-vamping niche, the 
problem is effective compiling 
technologies

(LLVM is on the run)

RTL 

(Register Transfer 
Level)

Logic Synthesis Verilog/
SystemVerilog, VHDL

Well-established 
methodology, the problem of 
«wiring». So successful that 
is it slowing down further 
evolution ?

Gate Level Netlist APR (Automatic 
Place and Route)

Verilog, VHDL

Layout of Real Silicon
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Syntactic features

What we have to represent, with examples based on Verilog
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Syntactic Feature #1 :  
Time

▪HDLs represent real-world systems: they live in a time-frame

▪ In general, it’s not necessary to represent floating-point values 

at full accuracy. Typically HDLs use integer values or fixed 
point values to represent «time units»

▪ Typically HDLs represent delays, so that it’s implicit that «time 

0» is the origin of everything


‘timescale 1ns/1ps


initial

  begin

    #10 <…do something …>

    #40 <…do something …>
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Happens at 10.000 ns

Happens at 50.000 ns



Syntactic Feature #2 :  
Bit Level Data Types and Operators
▪Bit representation

▪High value ! 1

▪ Low value ! 0

▪High-impedance value ! Z

▪ To model three-stateable busses


▪Undefined value ! X

▪ To model un-initialized registers, floating input 

effects, bus contention


▪Arbitrary-length words

▪ ‘12h0F5


▪Bit matrix

▪ To model storage media (ROMs, RAMs 

initialization)
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▪Operators on busses

▪Concatenation {a,b,c}

▪ Sub-range Selection 
a[3:5]


▪Bit level operators ~& , 
~| , ~^ 

▪Arithmetic operators



Syntactic Feature #3 :  
Hierarchical Composition

▪Modules

▪ Instances

▪ Arrayed instances

▪ Parametric instantiation
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M1 M3

M2 M1 M2

U1 U2

module M1 (<io ports>) ;

…

endmodule


module M2 (<io ports>) ;

…

endmodule


module M3 (<io ports>) ;

…

M1 U1 (<connections>) ;

M2 U2 (<connections>) ;

…

endmodule


Unstructured modules are called «primitives»

Available set of primitives defines the «level of abstraction»



Syntactic Feature #4 :  
Parametric instantiation
▪Useful to build reusable libraries of code

▪ Very uncomfortable syntax in Verilog

▪ Ambiguity : uses for instruction and 

variables, low readibility

▪Useful only on simple arrayed instances
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Syntactic Feature #5 :  
Connections and Wiring

▪Modules have «ports» (input, output, in-out)

▪ Instances inside a module are connected by «wires»

▪ map by order: mymod U1(y,a,b);

▪ map by name: mymod U1(.out(y),.in1(a),.in2(b)); 


▪Need of an unambigous semantics :

▪ What does it mean that two ports are connected ?
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M1 M2

U1 U2



Syntactic Feature #6 :  
Wires and Continuous Assignment

assign y = a & b ;


▪ At any change of a or b, y must be updated

▪Different mind-set with respect to general programming

▪Models combinational logic


assign y = #10  a & b ;


▪ Assignment has effect after 10 time units in the future
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Syntactic Feature #7 :  
States and Storage

reg [7:0] x ;

reg [15:0] M [1023:0] ;
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Definition of states and storages characterizes digital systems more than 
boolean logic. Sources of ambiguity:

▪ Variables as in general programming

▪ Proper state variables (as in FSMs)

▪ Sampling devices, synchronizers

▪ Update on edge or on level (d-ff vs. d-latch)

▪ Shift registers, SIPO, PISO, LFSR

▪ Different kind of memories

▪ LIFO, FIFO access


Here is the battle between increasing abstraction and preserving 
fundamental details



Syntactic Feature #8 :  
Events and Sensitivity
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always @ ( a or b ) 

y = a + b ;

always @ ( posedge clk ) 

q = d ;

An event is «something that happens».

In the digital domain, any change of any 
signal is an event.

Positive edge 0 ! 1 must be 
distinguished by negative edge 1 ! 0


Full sensitivity list ! combinational logic

Partial sensitivity list ! sequential logic

! my_event ;

...

@ ( my_event ) <…do something …>

User defined events

Event triggering


Event serving



Syntactic Feature #9 :  
Behavioral Modeling
▪Needed to introduce general 

programming primitives in the context 
of hardware modeling

▪ Very useful in the modeling and 

verification phase  (stimuli abstraction)

▪Greatest source of confusion:

▪ Generates the false illusion that 

hardware design is like programming

▪ Generates bad abstractions and 

ambiguous semantics

▪ Discrepancies between simulation and 

synthesis
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module while_example (); 

  integer i=0;

  reg [7:0] r_data[15:0]; 

   

  initial begin

    r_data[i] = i*i;

    while (r_data[i] < 100)  

        begin

        i = i + 1;

        r_data[i] = i*i;

        #10;

        end

    end

endmodule

What «i» and «r_data» are in the physical world ?

In a time-frame, when they are updated ?



Semantic features

How descriptions map on the physical world
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Fundamental semantics of digital 
systems representations

▪ delayed functions
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f Δ

y(t+Δ) = a(t)+b(t) q(tc+Δ) = d(tc)

d q

c

▪ sampling devices

always @ ( a or b ) 

y = #(delta) a + b ;

always @ ( posedge clk ) 

q = #(delta) d ;

tcc

Fits perfectly FP-style Issues to fit FP-style



Semantics of connections 17

M1 M2

U1 U2

• Simple «wire» or «bus», no protocols (just a metal connection)

• Synchronous, asynchronous, unidirectional, bidirectional ?


• Very basic synchronism, adding «data valid» signal

• Hand-shaking (request, acknowledge)

• Synchronous data channel

• Queued message passing (blocking, non-blocking)

• Memory access protocols (arbitrated or not)


Semantics of connections is strictly connected to the description level.


By experience, most of design bugs are at the interface between blocks: a tight control 
of interconnection semantics is fundamental to design success


Verilog only defines a basic directionality: one input port can be connected to only one 
output port

What is 
this ?



Simulation engines
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How to check design correctness



Instruction Accurate Simulation

▪Virtual Machine Methodology

▪Useful to validate the I.S. at an upper level

▪Abstracting instruction set details

▪ If I.S. is the target of design activity, the compiler is the 

bottleneck : parameterized compilation of SW being executed 
on the machine

▪The problem of resources «boundness»: hardware-aware 

compilers 

▪Growing popularity of LLVM/MLIR tool-chain
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Each block is sensible to input wires

and drives output wires

Each wire has a list of connected 
blocks

Keep a «Touched blocks list»


On clock event :

Update storage devices:

Propagate events

While (touchedList is not empty)

Clock/Cycle  Accurate Simulation 
▪ FSM-like execution

▪ If we are not interested to intra-clock-cycle propagation
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x(t) next = f(x(t)) x(t+T) = next

compute update

▪Untimed data-flow

▪ If we are not interested to accurate timing 

inside clock cycle 

+

*
-event



Timing Accurate Simulation 
▪Timed Data-Flow model, events cascade

▪Discrete event engines based on:

▪ Priority Queue (Heap with time tag as the key)

▪Calendar Queue (Priority Queue implemented as a hash-table)

▪ Time Wheel (Circular buffer of events-list with a pointer advancing at each 

time step)

▪ Local Counters (Each module has its own time counter initialized when an 

event arrives, counted down at any unit time step)
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f Δ

y(t+Δ) = a(t)+b(t)

at time t, a 
changes to 1

event queue

At time 
t+delta, 

update y to 1

event queue
serve event



A few words about synthesis 22

▪ High-Level Synthesis

Starting from an algorithm code, allocates hardware resources according to area/timing 
constraints; very successful on implementing DSP algorithms, not so effective on control-
dominated architectures


▪ Logic Synthesis

Very well established tool, based on boolean function reduction and state machines  
optimization. Unexpected results if designer is not disciplined (linting tools).


▪ Instruction Set synthesis

Only apparent abstraction. Based on predefined pipelined architectures, customized on 
designer input parameters.


▪ HW/SW co-synthesis

No well established tools. Based on heuristics and designers experience.


▪ Place & Route Algorithms

Complex topic, lot of heuristics, based on search for an optimal placement plus simulated 
annealing to wire blocks in an optimal way. Predictable results and optimal metrics are 
the big challenges.



Some issues
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Some issues
▪Great success of digital systems in last thirty years is mostly due to 

the implementation of the synchronous model : separate logic 
functionality from timing and verify both in parallel (similar to HW/
SW partitioning in processors)

▪ The most successful HDL (Verilog) doesn’t have any syntactic or 

semantic way to define explicitely clock domains : this is done at an 
upper level, typically in the synthesis tool environment

▪Clock is like any other wire : is this freedom ? No, it just increases 

the probability of introducing bugs


▪ The freedom of «wiring» allowed by Verilog is strictly connected to 
the «goto» problem. Software engineers solved this problem long 
time ago by structured programming, hardware engineers don’t do 
it yet. No «structured hardware design» on the shelf.
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Some issues
Again... 

▪ The most successfull theoretical model in HW design is the FSM (Finite State 

Machine): Verilog has no way to define a FSM in a formally structured way.

▪ The freedom of defining a FSM in a no formal way just increases the probability of 

introducing bugs.

Again…

▪ Verilog has no semantics of  interconnections other than basic in/out declarations. 

High-level synthesis tools have, but they skip many critical low-level details


▪ Exponential increase of complexity of digital design, increase of parallelism, 
necessity of predictable metrics are pushing Verilog to its limits. 

▪ This is why there is a new trend in HDL design : Software engineering methods 

applied to hardware design to raise the abstraction level and avoid «wild wiring»
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Alternative tools aimed at raising the 
abstraction level (just a sample)

▪Chisel : based on Scala, adopts test-driven design model, 
hard learning curve for an expert hardware engineer with 
none or little «software engineering mindset» 


▪Cλash : pure functional approach, same problem of the 
engineer’s mindset


▪ TV-Verilog : easy syntax to define pipelining schemes, very 
promising tool. This is an example of how well-defined syntax 
features associated to a well-defined semantics, makes things 
easier and more productive for the user
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A proposal : MyProcessor
▪ Philosophy : Processor as a tool, not only as a component

▪ Searching for the optimal PPA trade-off

▪ Limited use of «wire» concept through FP-like syntax

▪ Avoid micro-details of instruction set through IS abstraction

▪ Standard storage primitives and «behavioral tasks»

▪ Easy parameterization and arrayed instantiation

▪ Explicit clock and reset domains

▪ Explicit clock scheme

▪Not only for processors but useful for a generic design


▪ Status:

▪ Proof of concept in Python

▪ Working on ANTLR+Kotlin flow as described by Federico Tomassetti
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Some Details 28

Clock scheme defined at HDL level

domain clk_reg :

	 reg R1 [32]

	 reg A1 [8]


domain clk_mem :

	 mem M1 [ 32, 1024 ]


R1 <= M1.read(A1)

clk_reg

clk_mem

Memory access task

This syntax is enough for the 
compiler to understand how to 
connect things: no use of «wires»


This substitutes dozens code lines 
without loosing details on clock 
behavior.



Trends and conclusion
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Trends Today
▪Raise the level of hardware abstraction without loosing critical details, 

possibly not towards strictly «software mindset» solutions. The problem is 
that hardware engineers and software engineers have a different mind-set; 
Typically hardware engineers don’t know what is a monad, while software 
engineers don’t know what is asynchronous metastability ☺ (joking!)

▪Dealing with massive heterogeneous parallelism

▪ Tight control of PPA metrics

▪ Formal correctness: verification cost exploded, observability of state 

space, correct-by-design methodology

▪Democratization of design: open source EDA, digital design as a cloud 

service

▪HW-SW co-design and co-synthesis are still open topics, no well-

established methodologies

▪ The problem of «parametric» and hardware-aware compilers (LLVM, 

MLIR…)

▪Neuromorphic processing, non-VonNeumann architectures: ML/AI on 

synthesized HW

▪ Projectional editing applied to HW design : a possibility ?
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Conclusion
▪ Big opportunities for software engineers to help hardware designers in 

embracing a growing complexity


▪ A famous Dijkstra’s citation enlightened me

“The purpose of abstraction is not to be vague, but to create a new semantic 

level in which one can be absolutely precise”

▪ Reinforce the concept of what is the «semantics» of digital systems 

representations at any level of description

31

“This is an exciting time to be a researcher interested in PL and hardware” 
Lenny Truong, Pat Hanrahan “A Golden Age of Hardware Description Languages: Applying 
Programming Language Techniques to Improve Design Productivity” SNAPL 2019



Thanks for your attention!
ldesantis@ymail.com
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