
HDLs Hardware Description Languages  
	 as  
	 	 DSLs Domain Specific Languages

Luca De Santis, June 2021, for Strumenta Community

1

Introduction
▪ In this presentation we are going to talk about hardware description

languages in the perspective of language design, in syntactic and
semantic aspects

▪We will introduce the context in which HDLs are used and their

typical features

▪We will also introduce some trends today and a couple of proposals

2

What is a  
Hardware Description Language

A HDL is a (formal) language aimed to represent

▪ Structure

▪ Behavior

of (digital) electronic systems, with the purpose of

▪ Simulate

▪ Synthesize

3

resembles

Structure Class/Objects hierarchy

Behavior Functions, methods

Simulation Interpretation

Synthesis Translation

Note that:

Levels of description
Level Tools and

Methodology
Languages Comment

Algorithmic High-Level Synthesis C/C++, System C,
Matlab

Successful in DSP, inefficient
in the general case

ISA

(Instruction Set
Architecture)

ISA/processor
synthesis

DSLs (LISA), System-
C

A re-vamping niche, the
problem is effective compiling
technologies

(LLVM is on the run)

RTL

(Register Transfer
Level)

Logic Synthesis Verilog/
SystemVerilog, VHDL

Well-established
methodology, the problem of
«wiring». So successful that
is it slowing down further
evolution ?

Gate Level Netlist APR (Automatic
Place and Route)

Verilog, VHDL

Layout of Real Silicon

4

Syntactic features

What we have to represent, with examples based on Verilog

5

Syntactic Feature #1 :  
Time

▪HDLs represent real-world systems: they live in a time-frame

▪ In general, it’s not necessary to represent floating-point values

at full accuracy. Typically HDLs use integer values or fixed
point values to represent «time units»

▪ Typically HDLs represent delays, so that it’s implicit that «time

0» is the origin of everything

‘timescale 1ns/1ps

initial

 begin

 #10 <…do something …>

 #40 <…do something …>

6

Happens at 10.000 ns

Happens at 50.000 ns

Syntactic Feature #2 :  
Bit Level Data Types and Operators
▪Bit representation

▪High value ! 1

▪ Low value ! 0

▪High-impedance value ! Z

▪ To model three-stateable busses

▪Undefined value ! X

▪ To model un-initialized registers, floating input

effects, bus contention

▪Arbitrary-length words

▪ ‘12h0F5

▪Bit matrix

▪ To model storage media (ROMs, RAMs

initialization)

7

▪Operators on busses

▪Concatenation {a,b,c}

▪ Sub-range Selection
a[3:5]

▪Bit level operators ~& ,
~| , ~^

▪Arithmetic operators

Syntactic Feature #3 :  
Hierarchical Composition

▪Modules

▪ Instances

▪ Arrayed instances

▪ Parametric instantiation

8

M1 M3

M2 M1 M2

U1 U2

module M1 (<io ports>) ;

…

endmodule

module M2 (<io ports>) ;

…

endmodule

module M3 (<io ports>) ;

…

M1 U1 (<connections>) ;

M2 U2 (<connections>) ;

…

endmodule

Unstructured modules are called «primitives»

Available set of primitives defines the «level of abstraction»

Syntactic Feature #4 :  
Parametric instantiation
▪Useful to build reusable libraries of code

▪ Very uncomfortable syntax in Verilog

▪ Ambiguity : uses for instruction and

variables, low readibility

▪Useful only on simple arrayed instances

9

Syntactic Feature #5 :  
Connections and Wiring

▪Modules have «ports» (input, output, in-out)

▪ Instances inside a module are connected by «wires»

▪ map by order: mymod U1(y,a,b);

▪ map by name: mymod U1(.out(y),.in1(a),.in2(b));

▪Need of an unambigous semantics :

▪ What does it mean that two ports are connected ?

10

M1 M2

U1 U2

Syntactic Feature #6 :  
Wires and Continuous Assignment

assign y = a & b ;

▪ At any change of a or b, y must be updated

▪Different mind-set with respect to general programming

▪Models combinational logic

assign y = #10 a & b ;

▪ Assignment has effect after 10 time units in the future

11

Syntactic Feature #7 :  
States and Storage

reg [7:0] x ;

reg [15:0] M [1023:0] ;

12

Definition of states and storages characterizes digital systems more than
boolean logic. Sources of ambiguity:

▪ Variables as in general programming

▪ Proper state variables (as in FSMs)

▪ Sampling devices, synchronizers

▪ Update on edge or on level (d-ff vs. d-latch)

▪ Shift registers, SIPO, PISO, LFSR

▪ Different kind of memories

▪ LIFO, FIFO access

Here is the battle between increasing abstraction and preserving
fundamental details

Syntactic Feature #8 :  
Events and Sensitivity

13

always @ (a or b)

y = a + b ;

always @ (posedge clk)

q = d ;

An event is «something that happens».

In the digital domain, any change of any
signal is an event.

Positive edge 0 ! 1 must be
distinguished by negative edge 1 ! 0

Full sensitivity list ! combinational logic

Partial sensitivity list ! sequential logic

! my_event ;

...

@ (my_event) <…do something …>

User defined events

Event triggering

Event serving

Syntactic Feature #9 :  
Behavioral Modeling
▪Needed to introduce general

programming primitives in the context
of hardware modeling

▪ Very useful in the modeling and

verification phase (stimuli abstraction)

▪Greatest source of confusion:

▪ Generates the false illusion that

hardware design is like programming

▪ Generates bad abstractions and

ambiguous semantics

▪ Discrepancies between simulation and

synthesis

14

module while_example ();

 integer i=0;

 reg [7:0] r_data[15:0];

 initial begin

 r_data[i] = i*i;

 while (r_data[i] < 100)

 begin

 i = i + 1;

 r_data[i] = i*i;

 #10;

 end

 end

endmodule

What «i» and «r_data» are in the physical world ?

In a time-frame, when they are updated ?

Semantic features

How descriptions map on the physical world

6/10/2021 15

Fundamental semantics of digital
systems representations

▪ delayed functions

16

f Δ

y(t+Δ) = a(t)+b(t) q(tc+Δ) = d(tc)

d q

c

▪ sampling devices

always @ (a or b)

y = #(delta) a + b ;

always @ (posedge clk)

q = #(delta) d ;

tcc

Fits perfectly FP-style Issues to fit FP-style

Semantics of connections 17

M1 M2

U1 U2

• Simple «wire» or «bus», no protocols (just a metal connection)

• Synchronous, asynchronous, unidirectional, bidirectional ?

• Very basic synchronism, adding «data valid» signal

• Hand-shaking (request, acknowledge)

• Synchronous data channel

• Queued message passing (blocking, non-blocking)

• Memory access protocols (arbitrated or not)

Semantics of connections is strictly connected to the description level.

By experience, most of design bugs are at the interface between blocks: a tight control
of interconnection semantics is fundamental to design success

Verilog only defines a basic directionality: one input port can be connected to only one
output port

What is
this ?

Simulation engines

6/10/2021 18

How to check design correctness

Instruction Accurate Simulation

▪Virtual Machine Methodology

▪Useful to validate the I.S. at an upper level

▪Abstracting instruction set details

▪ If I.S. is the target of design activity, the compiler is the

bottleneck : parameterized compilation of SW being executed
on the machine

▪The problem of resources «boundness»: hardware-aware

compilers

▪Growing popularity of LLVM/MLIR tool-chain

19

Each block is sensible to input wires

and drives output wires

Each wire has a list of connected
blocks

Keep a «Touched blocks list»

On clock event :

Update storage devices:

Propagate events

While (touchedList is not empty)

Clock/Cycle Accurate Simulation
▪ FSM-like execution

▪ If we are not interested to intra-clock-cycle propagation

20

x(t) next = f(x(t)) x(t+T) = next

compute update

▪Untimed data-flow

▪ If we are not interested to accurate timing

inside clock cycle

+

*
-event

Timing Accurate Simulation
▪Timed Data-Flow model, events cascade

▪Discrete event engines based on:

▪ Priority Queue (Heap with time tag as the key)

▪Calendar Queue (Priority Queue implemented as a hash-table)

▪ Time Wheel (Circular buffer of events-list with a pointer advancing at each

time step)

▪ Local Counters (Each module has its own time counter initialized when an

event arrives, counted down at any unit time step)

21

f Δ

y(t+Δ) = a(t)+b(t)

at time t, a
changes to 1

event queue

At time
t+delta,

update y to 1

event queue
serve event

A few words about synthesis 22

▪ High-Level Synthesis

Starting from an algorithm code, allocates hardware resources according to area/timing
constraints; very successful on implementing DSP algorithms, not so effective on control-
dominated architectures

▪ Logic Synthesis

Very well established tool, based on boolean function reduction and state machines
optimization. Unexpected results if designer is not disciplined (linting tools).

▪ Instruction Set synthesis

Only apparent abstraction. Based on predefined pipelined architectures, customized on
designer input parameters.

▪ HW/SW co-synthesis

No well established tools. Based on heuristics and designers experience.

▪ Place & Route Algorithms

Complex topic, lot of heuristics, based on search for an optimal placement plus simulated
annealing to wire blocks in an optimal way. Predictable results and optimal metrics are
the big challenges.

Some issues

6/10/2021 23

Some issues
▪Great success of digital systems in last thirty years is mostly due to

the implementation of the synchronous model : separate logic
functionality from timing and verify both in parallel (similar to HW/
SW partitioning in processors)

▪ The most successful HDL (Verilog) doesn’t have any syntactic or

semantic way to define explicitely clock domains : this is done at an
upper level, typically in the synthesis tool environment

▪Clock is like any other wire : is this freedom ? No, it just increases

the probability of introducing bugs

▪ The freedom of «wiring» allowed by Verilog is strictly connected to
the «goto» problem. Software engineers solved this problem long
time ago by structured programming, hardware engineers don’t do
it yet. No «structured hardware design» on the shelf.

24

Some issues
Again...

▪ The most successfull theoretical model in HW design is the FSM (Finite State

Machine): Verilog has no way to define a FSM in a formally structured way.

▪ The freedom of defining a FSM in a no formal way just increases the probability of

introducing bugs.

Again…

▪ Verilog has no semantics of interconnections other than basic in/out declarations.

High-level synthesis tools have, but they skip many critical low-level details

▪ Exponential increase of complexity of digital design, increase of parallelism,
necessity of predictable metrics are pushing Verilog to its limits.

▪ This is why there is a new trend in HDL design : Software engineering methods

applied to hardware design to raise the abstraction level and avoid «wild wiring»

25

Alternative tools aimed at raising the
abstraction level (just a sample)

▪Chisel : based on Scala, adopts test-driven design model,
hard learning curve for an expert hardware engineer with
none or little «software engineering mindset»

▪Cλash : pure functional approach, same problem of the
engineer’s mindset

▪ TV-Verilog : easy syntax to define pipelining schemes, very
promising tool. This is an example of how well-defined syntax
features associated to a well-defined semantics, makes things
easier and more productive for the user

26

A proposal : MyProcessor
▪ Philosophy : Processor as a tool, not only as a component

▪ Searching for the optimal PPA trade-off

▪ Limited use of «wire» concept through FP-like syntax

▪ Avoid micro-details of instruction set through IS abstraction

▪ Standard storage primitives and «behavioral tasks»

▪ Easy parameterization and arrayed instantiation

▪ Explicit clock and reset domains

▪ Explicit clock scheme

▪Not only for processors but useful for a generic design

▪ Status:

▪ Proof of concept in Python

▪ Working on ANTLR+Kotlin flow as described by Federico Tomassetti

27

Some Details 28

Clock scheme defined at HDL level

domain clk_reg :

	 reg R1 [32]

	 reg A1 [8]

domain clk_mem :

	 mem M1 [32, 1024]

R1 <= M1.read(A1)

clk_reg

clk_mem

Memory access task

This syntax is enough for the
compiler to understand how to
connect things: no use of «wires»

This substitutes dozens code lines
without loosing details on clock
behavior.

Trends and conclusion

6/10/2021 29

Trends Today
▪Raise the level of hardware abstraction without loosing critical details,

possibly not towards strictly «software mindset» solutions. The problem is
that hardware engineers and software engineers have a different mind-set;
Typically hardware engineers don’t know what is a monad, while software
engineers don’t know what is asynchronous metastability ☺ (joking!)

▪Dealing with massive heterogeneous parallelism

▪ Tight control of PPA metrics

▪ Formal correctness: verification cost exploded, observability of state

space, correct-by-design methodology

▪Democratization of design: open source EDA, digital design as a cloud

service

▪HW-SW co-design and co-synthesis are still open topics, no well-

established methodologies

▪ The problem of «parametric» and hardware-aware compilers (LLVM,

MLIR…)

▪Neuromorphic processing, non-VonNeumann architectures: ML/AI on

synthesized HW

▪ Projectional editing applied to HW design : a possibility ?

30

Conclusion
▪ Big opportunities for software engineers to help hardware designers in

embracing a growing complexity

▪ A famous Dijkstra’s citation enlightened me

“The purpose of abstraction is not to be vague, but to create a new semantic

level in which one can be absolutely precise”

▪ Reinforce the concept of what is the «semantics» of digital systems

representations at any level of description

31

“This is an exciting time to be a researcher interested in PL and hardware”
Lenny Truong, Pat Hanrahan “A Golden Age of Hardware Description Languages: Applying
Programming Language Techniques to Improve Design Productivity” SNAPL 2019

Thanks for your attention!
ldesantis@ymail.com

32

