
INTRODUCTION TO LISP
FOR LANGUAGE ENGINEERS
alessio.stalla@strumenta.com

Strumenta Community Virtual Meetup, 2021-05-21

mailto:alessio.stalla@strumenta.com

GOALS

• Getting a glimpse of what metaprogramming techniques and DSL
implementation techniques exist in the Lisp world

• Discussing parallels and differences with other technologies (most notably
JetBrains MPS)

• Non-goals:
• Teaching programming in Lisp
• Giving a complete, in-depth picture
• Saying everything (will leave something out)

LISP IS:

• A family of languages dating back to 1959
• A formal notation for computation (think lambda calculus or Turing

machine), based on symbolic transformations
• Loosely, a paradigm that mixes compile-time metaprogramming,

functional idioms and dynamic typing
• Variants exist with optional static typing, imperative constructs, object

systems, first-class continuations, etc.

LISP SOURCE CODE IS A TREE

(image courtesy of DrRacket)

LISP SOURCE CODE IS A TREE

• Ofc it has a canonical textual representation, called S-expressions:
• (+ 1 (* 2 3) 4) for the tree in the picture

• However, S-expressions are NOT the source code and NOT the only possible
form of the source code

• S-expressions are only a convenient representation that has stuck basically
unchanged from 1959, despite several attempts at other, «friendlier»
syntaxes (M-expressions),
• See also the Apple Dylan language (now OpenDylan)

• Kind of like XML is not the source code in MPS

…ACTUALLY, IT’S A GRAPH

• Internal nodes are «cons cells» or conses
• mutable pairs of pointers, historically "car" and "cdr", or head/tail, first/rest, …

• Leaves are atoms (symbols, numbers, strings, NIL, …)
• Nodes can and do have pointers to other nodes to create a list, tree, or

graph structure, as seen in the picture
• Note that «atoms» can actually be composite objects (e.g. structs), but for the

purpose of our definition, only the structure created with conses counts

EVAL: TREE à TREE (+ SIDE-EFFECTS)

• Most basic Lisp implementation: the eval function
• Eval assigns a meaning (with side-effects) to trees
• Signature is tree à tree, NOT string à any!! (As it is, e.g., in JS)
• Note: «tree» = atom or cons, i.e., any possible Lisp datum

• But not all trees have a valid meaning, i.e. eval is a partial function that errors on
malformed code

EVAL: TREE à TREE (+ SIDE-EFFECTS)

• eval(atom) => ?
• If atom is the symbol S: value of the variable named S
• Otherwise, self-evaluating:

• eval(3) => 3
• eval("hi") => "hi"
• eval(NIL) => NIL
• and so on

EVAL: TREE à TREE (+ SIDE-EFFECTS)

• eval(cons) => ?
• head is operator
• tail are arguments
• operator can be:

• function, e.g. (+ 1 2 3) => 6
• special operator, e.g. (lambda (x) (+ 1 x)) =>

#<FUNCTION (LAMBDA (X)) {22661B4B}>
• for functions, (f a b …) = (apply f (eval a) (eval b) …) at runtime
• special operators receive unevaluated arguments at compile time

METACIRCULARITY

• The language defined by eval can be used (and HAS been used) to
implement an eval function

• Therefore, eval is both the Lisp interpreter AND a Lisp function
• Of course, it can’t be «turtles all the way down» – at some point, someone

will have written a lower-level eval function in C, ASM, Java, …
• …or in another Lisp that compiles or cross-compiles to the target machine

(common case)

SAME FOR COMPILE…

• compile: tree à tree is a Lisp function as well, and it’s written in Lisp
• It doesn’t evaluate its input, it only transforms it into a form which is closer to

the machine – even down to machine code
• Example…
• compile is not special: we can write other functions that process trees

MACROS

• User-defined special operators (in Lisp)
• I.e., compile-time tree-to-tree transformations
• I.e., language is extensible and extension lang same as target lang

• No text-based preprocessor (e.g., C)
• No special metaprogramming language (e.g., C++ templates)

• I.e., language can be brought closer to the domain while keeping the same
toolchain

• Macro are composable: if the tree produced by a macro contains calls to
other macros, they’re expanded recursively

QUOTATION

• How to construct the expression (f x y)?
• (list f x y) => error: unknown variable f
• list is a function, so (list f x y) = (apply list (eval f) (eval x) (eval y))
• How to refer to the symbol F rather than the value of the variable F?
• I.e., how to prevent evaluation?
• Quote special operator: (eval (quote x)) => x for any x
• Quote so important that it has its special syntax: ‘x = (quote x)

QUASI-QUOTATION

• (defmacro dummy () (list ‘f ’x ‘y))
• (defmacro too-dumb (f x y) (list ‘if (list ‘> (list f x 3) 0) (list + y 4) "uh?"))
• Constructing non-trivial code by means of list & co. is unreadable
• Enter quasiquote (template mini-language)
• (defmacro better (f x y) `(if (> (,f ,x 3) 0) (+ ,y 4) "oooh…!"))

NOW YOU KNOW EVERYTHING!

• Time for some questions before we go on

WHAT WE CAN DO WITH MACROS

• Resource management (e.g., with-open-file)
• Precompute expensive stuff at compile-time
• Declarative programming

WHAT WE CAN DO WITH MACROS

• CLOS (Common Lisp Object System) OOP on top of a functional-imperative
language

• Prolog in Lisp (Norvig’s PAIP and Allegro Prolog)
• ACL2 modelling language and theorem prover
• Parenscript, Lisp-to-JS transpiler in ~4kloc
• Introducing language support for concurrency, continuations, FFI, …
• …i.e., what we can do on top of BaseLanguage in MPS, more or less

MACRO PITFALLS

(Unintentional) variable capture:
(defmacro foo (a b &body body)

`(let ((intermediate-result ,(combine a b)))

,@body))

(let ((intermediate-result 42))

(foo a b

(print intermediate-result))) ;Does NOT print 42

MACRO PITFALLS

• (Unintentional) variable capture, solutions:
• Manually ensure unique symbols with (gensym)
• Hygienic macro systems in Scheme (disallow variable capture)

• Particularly important because Scheme is a Lisp-1

• However, sometimes you want variable capture, in macros that introduce a
local context, e.g.

(defmethod foo (…)
(call-next-method)) ;this is like super.foo(…)
• Defmethod is a macro!

MACRO PITFALLS

• Lisp-1 vs Lisp-2
(let ((list …))

(list …))
• Are the two «list» the same thing?
• I.e., is there a single namespace for functions and variables, or are those

separate?
• Lisp-1 makes functional programming easier but metaprogramming harder
• Lisp-2 is more verbose – (apply #’f …) rather than (f …) when f is a variable
• Note that this is not specific to Lisp, however it interacts with macros

MACRO PITFALLS

• Phases of evaluation:
(defun foo (…) …)
(defmacro bar (…)

(foo …))
• Foo is only available at runtime, while bar needs it at compile-time
• Solutions:

• Put foo in another file that is loaded before the one where bar is defined
• Use eval-when or similar to augment the compilation environment with foo

MACRO PITFALLS/ADVANCED

• Code walker: when a macro needs to analyze source code
• E.g., finding free variables in its body

• The macro function must know what to expand in order to analyze
• E.g. in (let ((foo 1)) (foo 2)), the first foo is a local variable declaration, the

second one is an expression and foo may be a macro
• In general, some special operators are implementation-specific and the macro

doesn’t know about them
• In (sys:%some-special-thing (foo bar)), is (foo bar) a macro invocation or not?

• As far as I know, no portable, universal code walker exists, at least in
Common Lisp

FURTHER DISCUSSION

• Interactions with the type system
• Debugging
• Compiler macros (user-defined compiler optimization strategies)
• Symbol macros

• (with-slots (name surname) (make-instance ‘person)
(list name surname))

• …

THANKS!

