
Semgrep
A polyglot customizable

bug-finding tool

1

Yoann Padioleau| pad@r2c.dev
 @r2cdev

Strumenta Meetup, January 2023

https://twitter.com/r2cdev

2

whois?
me:
Yoann Padioleau, software engineer @ r2c

ex-Facebook dev (started Test Engineering,
AppSec, and Program Analysis teams),
ex-academia (coccinelle)

r2c
We’re an SF based static analysis startup
on a mission to profoundly improve
software security and reliability.

tl;dr

3

● Semgrep is a customizable, lightweight static analysis tool for finding bugs
● Batteries included with hundreds of existing community rules
● Combine the speed + customization of grep with the expressiveness of SAST
● Runs offline, on uncompiled code, fast and open source!
● No painful DSL, patterns look like the source code you’re targeting

1. Background - grep and Abstract Syntax Trees (ASTs)

2. Demo - How do I use it?

3. Ecosystem: Registry, CI/CD, WebApp

4. Language Engineering: tree-sitter, generic AST, parsing/naming

4

Outline

grep and Abstract Syntax Trees (ASTs)

5

exec("ls")

exec(some_var)

exec (arg)

exec(
 bar
)

other_exec(foo)

// exec(foo)

print("exec(bar)")

grep, ASTs, and Semgrep

6

✅ Easy - exec\(

✅ Easy - exec\(

⚠ Handle whitespace exec\s*\(

⚠ 😅 Handle whitespace/newlines

🛑😅😅 Method suffix matches exec

🛑😅😅 Is this a comment?

🛑😅😅 Is this a string literal?

xkcd 1171

7

Code is not a string, it’s a tree

8

@app.route("/index")
def index():
 rep = response.set_cookie(name(),
secure=False, s=func())
 return rep

string tree🧶 != 🌲
@app.route(“/index”)

def index():

return rep

response.set_cookie(

name(), func()

Tree Matching 🌲

9

● Many tree matching tools: Bandit, Dlint, ESLint, Flake8,
Golint, Gosec, Pylint, RuboCop, TSLint, and more!

● Have to become an expert in every AST syntax for every
language your team uses

● Need programming language expertise to cover all
idioms: languages have “more than one way to do it”

● Commercial SAST tools?
○ Complicated
○ Slow (not CI friendly)
○ Expensive

https://github.com/eslint/eslint/blob/master/lib/rules/no-eval.js

Find calls to eval()
in only 307 LOC 👍

https://github.com/eslint/eslint/blob/master/lib/rules/no-eval.js

10

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

Semgrep

https://instagram-engineering.com/static-analysis-at-scale-an-instagram-story-8f498ab71a0c

1. Ellipsis (“...”) operator
2. Metavariables
3. Advanced Features

Demo

11

Finding Banned, Deprecated, or Dangerous Functions

⇒ https://semgrep.dev/s/EwOP
Full Solution: https://semgrep.dev/s/7KGk

12

exec("ls")

$ semgrep -e ‘exec(...)’ foo.py

https://semgrep.dev/s/EwOP
https://semgrep.dev/s/7KGk

Hard-coded Secrets, Constant String Arguments

⇒ https://semgrep.dev/s/RGO8/
Full Solution: https://semgrep.dev/s/A89w/

13

https://semgrep.dev/s/RGO8/
https://semgrep.dev/s/A89w/

Semantic Equivalences
● Semgrep knows about the semantic of the

languages
○ Keyword arguments ordering
○ Import aliasing
○ Constant propagation
○ Symbolic expressions propagation
○ Dataflow-based taint propagation
○ associative/commutative operations
○ …

14

foo(kwd1=1,
 kwd2=2,
 ...)

subprocess.open(...)

foo(1)

foo(kwd2=2,
 kwd1=1,
 kwd3=3)

from subprocess import
 open as sub_open
res = sub_open(“ls”)

x = 1
bar()
foo(x)

Will
match

Semgrep (Python) patterns Target (Python) code

Will
match

Will
match

1. Ellipsis (“...”) operator
2. Metavariables
3. Advanced Features

Demo

15

Matching Comparisons with Metavariables

⇒ https://semgrep.dev/s/61o
Full Solution: https://semgrep.dev/s/oB9

16

https://semgrep.dev/s/61o
https://semgrep.dev/s/oB9

Order of API Calls Must be Enforced

https://semgrep.dev/s/LNX
Full Solution: https://semgrep.dev/s/kle 17

https://semgrep.dev/s/LNX
https://semgrep.dev/s/kle

The Rule

18

● Boolean composition of patterns
● ID, Message, severity, etc.
● More features:

○ Analyze embedded languages
○ Tainting mode
○ Metavariable comparisons
○ …

$ semgrep --config ‘myrules.yml’ /my/project

- id: eqeq-is-bad
 patterns:
 - pattern-not-inside: |
 def __eq__(...):
 ...
 - pattern-not-inside: assert(...)
 - pattern-not-inside: assertTrue(...)
 - pattern-not-inside: assertFalse(...)
 - pattern-either:
 - pattern: $X == $X
 - pattern: $X != $X
 - pattern-not: 1 == 1
 message: "useless comparison operation"
 languages: [python]
 severity: ERROR

Autofix - Use TLS

https://semgrep.live/clintgibler:use-listenAndServeTLS-try
Solution: https://semgrep.dev/s/clintgibler:use-listenAndServeTLS

19

https://semgrep.live/clintgibler:use-listenAndServeTLS-try
https://semgrep.dev/s/clintgibler:use-listenAndServeTLS

1. Ellipsis (“...”) operator
2. Metavariables
3. Advanced Features

Tutorials

20

https://semgrep.live/clintgibler:boto3-host-regex-try
Solution:https://semgrep.live/clintgibler:boto3-host-regex

Combining Semgrep with Regex - pattern-regex

21

https://semgrep.live/clintgibler:boto3-host-regex-try
https://semgrep.live/clintgibler:boto3-host-regex

Typed Patterns - Find calls to exec() on Runtime objects

22

Try it: https://semgrep.live/clintgibler:java-runtime-exec-try
Solution: https://semgrep.live/clintgibler:java-runtime-exec

https://semgrep.live/clintgibler:java-runtime-exec-try
https://semgrep.dev/s/clintgibler:java-runtime-exec

Taint Analysis

23

Try it: https://semgrep.live/ievans:tainting

https://semgrep.live/ievans:tainting?version=develop

JSON

24

Try it: https://semgrep.live/clintgibler:s3-account-permissions-try
Solution: https://semgrep.live/clintgibler:s3-account-permissions

https://semgrep.live/clintgibler:s3-account-permissions-try
https://semgrep.live/clintgibler:s3-account-permissions

Semgrep Ecosystem

25

The Registry and the Ruleset

26
$ semgrep --config ‘p/owasp-top-ten’ /my/project

● Enforce secure defaults + secure frameworks at CI time
○ Easy to add to CI as either a Docker container or Linux binary

○ JSON output

27

Integrations

Pull Request (PR) comments and Autofix

28

The SAAS App and the Rule Board

29

Why do people like Semgrep?
● Fast

○ Easy to parallelize (analyze files separately)
○ Does not take long in CI; can run in CI (vs Coverity, …)
○ Can even be used in editor (developer’s workflow)

● Support most (popular) languages
○ Python, Javascript, Java, Go, C++, OCaml, Scala, …
○ Takes few weeks to add a language (harder for

CodeQL)
○ Config files (IaC) too: Docker, Terraform, …

● Easy to setup
○ does not require buildable code (vs CodeQL, …)
○ Easy to configure with Web App

● Easy to customize
○ readable rules
○ “Learn principles once, apply to many languages”

30

Language
Engineering

31

ocaml-tree-sitter

32

Internally Semgrep relies on the tree-sitter library to parse code:
● Developed at Github (powers code highlighting in github.com, Atom, Neovim, some of VSCode plugins)
● GLR parser generator. No grammar action, generate CST from grammar (JSON program tree)
● Many bindings
● > 40 programming language grammars (C, C++, Java, Rust, Javascript, OCaml, …)
● Small but active community (2-3 regular committer per language)

We developed ocaml-tree-sitter, a tool to help generate typed AST from untyped
CST

● Build on reason-tree-sitter OCaml binding to tree-sitter
● OCaml-ready parsers for many languages: https://github.com/returntocorp/ocaml-tree-sitter-semgrep
● OPAM packages soon for each languages

https://github.com/tree-sitter/tree-sitter
https://github.com/returntocorp/ocaml-tree-sitter-core
https://github.com/onivim/reason-tree-sitter
https://github.com/returntocorp/ocaml-tree-sitter-semgrep

Semgrep parsing architecture

33

● Pfff vs tree-sitter
● Target vs

patterns

34

Semgrep matching architecture
● AST generic pattern vs AST

generic target
● Visiting and matching
● Matching monad
●

Semgrep semantic analysis architecture

35

● Naming
○ Target: let a = 1; function foo() { let a = 2; return a; }
○ Pattern: $X = 1; … return $X;

● Typing (declaration propagation)
● IL and CFG to support advanced features

○ Tainting (dataflow-based)
○ Constant propagation

Future work

36

● DeepSemgrep
○ Same rules
○ Interfile/Interprocedural analysis (interfile constant propagation (Java),

typing, tainting)
○ Slower, but less FPs/FNs

● Yaml -> Jsonnet (templating or rules, factorize rules, taint libraries, etc.)
● More languages
● More features
●

37

We are hiring!

R2C: We’re an SF based static analysis startup on a mission to profoundly
improve software security and reliability.

Join us! Love OCaml? Passion for dev tools and/or security? Full-remote
positions!

Contact me: pad@r2c.dev

38

Locally:
1. (brew or pip) install semgrep
2. semgrep --config=r2c .

Semgrep
lightweight static analysis for many languages

Yoann Padioleau | pad@r2c.dev
r2c.dev | @r2cdev

https://r2c.dev/survey ← plz :)

Online editor:
● semgrep.dev/playground

https://r2c.dev
https://twitter.com/r2cdev
https://r2c.dev/survey
https://semgrep.dev/playground

Semgrep history

39

Academia -> Facebook -> R2C Startup:
● Coccinelle (2007):

○ Domain Specific Language (DSL) for program transformation
○ Just for C (mostly for Linux device drivers)

● Sgrep (2011):
○ Syntactical grep (trimmed down version of semantic patches), to find bugs
○ Just for PHP (for Facebook codebase)

● Semgrep (2020):
○ Semantic grep, Polyglot (Python, Javascript, Java, Go, C, PHP, …)
○ An ecosystem to improve security (not just CLI: Playground, Web app, CI integration, …)
○ In 2022 Semgrep is used by many companies (Dropbox, Netflix, Snowflake, Figma, Apple, …)

“It takes 15 years for a research idea to reach the industry” - ??

/your/project/.semgrep.yml

Semgrep terminology

40

rules:
 - id: eqeq-is-bad
 patterns:
 - pattern-not-inside: |
 def __eq__(...):
 ...
 - pattern-not-inside: assert(...)
 - pattern-not-inside: assertTrue(...)
 - pattern-not-inside: assertFalse(...)
 - pattern-either:
 - pattern: $X == $X
 - pattern: $X != $X
 - pattern-not: 1 == 1
 message: "useless comparison operation `$X == $X` or `$X !=
$X`; if testing for floating point NaN, use `math.isnan`, or
`cmath.isnan` if the number is complex."
 languages: [python]
 severity: ERROR

def foo():
 return 1

def bar(a, b):
 return a + b

/your/project/foo.
py

Formula

Rule

Pattern
Target

The playground (rule editor)

41

42
https://github.com/returntocorp/semgrep/blob/develop/docs/configuration-files.md

https://github.com/returntocorp/semgrep/blob/develop/docs/configuration-files.md

43$ semgrep --config=https://semgrep.dev/p/gosec

44

semgrep.live/registry ⇒ github.com/returntocorp/semgrep-rules

$ brew install semgrep
$ semgrep --config=<url>

Community rule registry

https://semgrep.live/registry
https://github.com/returntocorp/sgrep-rules

Integrations

45

46

Web App, SSC,
DeepSemgrep

47

recap, a.k.a.
"learn semgrep in 5 min"

48

#1 Code equivalence (semantic grep)

● semgrep knows about the semantics of the language, so one pattern can match

variations of equivalent code (constant propagation! https://semgrep.live/4K5)

●

$X == $X

foo(kwd1=1,kwd2=2,...)

subprocess.open(...)

import foo.bar

Will match (a+b != a+b) # <=> !(a+b==a+b)

foo(kwd2=2, kwd1=1, kwd3=3)

from subprocess import open as
 sub_open

result = sub_open(“ls”)

from foo import bar

49

Will match

Will match

Will match

https://sgrep.live/4K5

#2: ‘...’ ellipsis operator

‘…’ can match sequences of:

● Arguments, parameters
● Characters
● Statements

foo(...,5)

foo(“...”)

$V = get()
...
eval($V)

Will match

foo(1,2,3,4,5)
foo(5)

foo(“whatever sequence of chars”)

user_data = get()
print(“do stuff”)
foobar()
eval(user_data)

50

Will match

Will match

#3 Metavariables (part 1)

● Metavariables start with a $ ($X, $Y, $WHATEVER) , contain uppercase ASCII characters

● Matches:
○ Expressions (including arguments)

○ Statements

○ Names (functions, fields, etc.)

foo($X,2)

if $E:
 foo()

if $X > $Y:
 $S

$F(1,2)

Will match foo(1,2)

if x > 2:
 foo()

if var > 2:
 return 1

foo(1,2)

51

Will match

Will match

Will match

#3 Metavariables (part 2)

You can reuse the same metavariable: semgrep enforces equality constraint

$X == $X

if $E:
 $S
else:
 $S

$V = open()
close($V)

Will match if (a+b == a+b):

if x > 2:
 foo()
 bar()
else:
 foo()
 bar()

myfile = open()
close(myfile)

52

Will match

Will match

