
Language engineering for the
EU Digital COVID-19 Certificate
Strumenta Virtual Meetup, April 14th 2022

DSL Consultancy

Links in chat!

DSL Consultancy

The EU DCC
Quick facts

What & Why 
 A system 
 provided through the 
 EU eHealth Network (eHN) 
 to issue and verify digital proofs of 
 vaccination, test, or recovery, 
 to facilitate freedom of movement during the COVID-19 pandemic 
 in a GDPR-compliant way.

Introduced July 1st 2021 
Countries participating ~50 (EU MS + EFTA + “Third Countries”) 
Number issued ~3 billion 
Bigger than, or compatible with other standards: WHO/ICAO, resp., DIVOC

DSL Consultancy

The EU DCC
What's in them

DSL Consultancy

DCC JSON payloadQR code

structure

Decode a DCC with e.g. https://floysh.github.io/DCC-green-pass-decoder/ 
(3rd party; demo)

https://floysh.github.io/DCC-green-pass-decoder/

The EU DCC
How they're made

DSL Consultancy

DSC identified by KID

DSCs stored on 
& retrieved from

The EU DCC
Software systems involved

EU provides EU DCC Gateway to publish DSCs to verify signatures: 
 the trust framework

 
Every participating country is responsible for building their own:

1) Verifiers (apps) - open-source reference implementations are available

2) Issuance infrastructure

3) National Backend in-between verifiers apps and Gateway

DSL Consultancy

The EU DCC
How to verify them

Technically valid Signature OK + JSON up-to-spec 

Fit-for-entry Is the DCC acceptable for its holder to enter a Country of Arrival 
 (CoA) regarding its entry regulations? 
 
 Examples of business logic as business rules: 
 
 - The result of a test certificate must be negative. 
 - A first vaccination with Janssen must be at administered at least 28 days ago. 
 - A second vaccination with Pfizer must be at most 270 days old 
 ...but minors are exempted!

DSL Consultancy

...or validation rules, or
conditions, or constraints...

The EU DCC
How to determine fit-for-entry

Sovereignty implies: 
 Every participating country can have their own 
 entry regulations ⇔ business rules

 
Problem: Determine fit-for-entry upfront  
 
Solution: Publish business rules prescribed 
 in an exchangeable, executable format on EU DCC Gateway

 
Design decision: Must be a JSON format

DSL Consultancy

Did someone say
“DSL”?!

The EU DCC
Validation framework

DSL Consultancy

Prescribing business rules
Why a JSON format?

1) Logic as JSON is “just data” ⇔ e.g. compliant with Apple's bytecode policy

2) JSON is well-supported across many platforms

3) No need to write a parser for a textual DSL (for many platforms)

4) E.g. JsonLogic already somewhat known, and allegedly “human-readable”

DSL Consultancy

https://jsonlogic.com/

Prescribing business rules
Why not use JsonLogic?

1) Not small: lots of operations, some with multiple variants (for convenience)

2) Behavior of implementations differs (⇔ no specification)

3) Custom operations are needed for EU DCC; 
mainly: working with dates and timestamps

DSL Consultancy

Prescribing business rules
What is CertLogic?

CertLogic is:

• A JSON format for expressing the logic part of business rules with

• “Inspired” by JsonLogic: 
 a minimal subset (on which it's compatible), 
 with a couple of domain-specific operations added

• Defined by: a specification that includes a test suite

• Implemented in: JavaScript (TypeScript), Java (Kotlin), Swift, Dart

DSL Consultancy

...a DSL?...

https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/specification
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/specification/testSuite
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-js
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-kotlin
https://github.com/eu-digital-green-certificates/json-logic-swift
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-dart

CertLogic
What is CertLogic?

A CertLogic expression evaluates (or: “is interpreted”) against given data. 
 
As a function: 
 
 evaluate: ⟪expr⟫ x ⟪data⟫ → ⟪result⟫  
 
⟪expr⟫ and ⟪data⟫ are in JSON format 
⟪result⟫ is often JSON, but can contain Date objects 
 
Can also throw an error if the expression is invalid, 
or a type incompatibility is encountered.

DSL Consultancy

Haskell people can read this “x”
as “→”

CertLogic
The “grammar”

Valid CertLogic expressions are:

• a simple literal: a ⟪boolean⟫, an ⟪integer⟫, or a "⟪string⟫"

• an operation of the form 
 
 { "⟪operation⟫": [⟪operand1⟫, ⟪operand2⟫, ...] }

• an array of CertLogic expressions: 
 
 [⟪expr1⟫, ⟪expr2⟫, ...]

DSL Consultancy

CertLogic
Operations (1/3)

• data access: { "var": "⟪path⟫" } 
Semantics: e.g. path = "v.0.f" evaluates to 1 on 
 { "v": [{ "f": 1 }] }

• if: { "if": [⟪guard⟫, ⟪then⟫, ⟪else⟫] }

• and: { "and": [⟪operand1⟫, ⟪operand2⟫, ...] }

• not: { "!": [⟪operand⟫] }

• reduce: { "reduce": [⟪operand⟫, ⟪lambda⟫, ⟪initial⟫] }

DSL Consultancy

CertLogic
Operations (2/3)

• equality: { "===": [⟪operand1⟫, ⟪operand2⟫] }

• membership: { "in": [⟪operand⟫, ⟪array⟫] }

• integer and date comparisons: 
{ "⟪operator⟫": [⟪operand1⟫, ⟪operand2⟫⟦, operand3⟧] }

• integer plus: { "+": [⟪operand1⟫, ⟪operand2⟫] }

DSL Consultancy

CertLogic
Operations (3/3)

• working with dates:

• { "plusTime": [⟪operand⟫, ⟪amount⟫, ⟪unit⟫] } 
Semantics: e.g. "2022-04-01" + 713 days = 2023-03-15

• { "dccDateOfBirth": [⟪operand⟫] } 
Semantics: “round up” a partial DOB YYYY⟦-MM⟧ to latest possible date, 
e.g. "2002" -> 2002-12-31, and "2004-02" -> 2004-02-29

• { "extractFromUVCI": [⟪operand⟫, ⟪index⟫] } 
Semantics: ("URN:UCI:01:NL:M6B3Y3663FA6REKP6KRL42#9", 2) -> "M6B3Y3663FA6REKP6KRL42"

DSL Consultancy

Demo: running a business rule

CertLogic
Operations (4/3)

“Where's my OR?!” 
 
Desugaring to the rescue: 
 
 { "or": [⟪expr1⟫, ⟪expr2⟫] } 
 
 === { "if": [⟪expr1⟫, ⟪expr1⟫, ⟪expr2⟫] }

DSL Consultancy

CertLogic
Implementations

• JavaScript (TypeScript): GitHub NPM

• Java (Kotlin): GitHub

• Swift: GitHub

• Dart: GitHub pub.dev

• JS util for working with EU DCC business rules: GitHub NPM

• JS component to render CertLogic expressions in HTML: GitHub NPM

DSL Consultancy

https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-js
https://www.npmjs.com/package/certlogic-js
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-kotlin
https://github.com/eu-digital-green-certificates/json-logic-swift
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-dart
https://pub.dev/packages/certlogic_dart
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/dcc-business-rules-utils
https://www.npmjs.com/package/dcc-business-rules-utils
https://github.com/ehn-dcc-development/dgc-business-rules/tree/main/certlogic/certlogic-html
https://www.npmjs.com/package/certlogic-html

CertLogic
Other tools

• Playground: CertLogic-fiddle (demo)

• Analyses of rules on EU DCC Gateway:

• GitHub

• Vaccine-country matrix (view)

• Vaccine acceptance per country (view)

• Checking a DCC against rules of all participating countries: 
 DCC Crosscheck (demo)

DSL Consultancy

https://certlogic-fiddle.vercel.app/
https://github.com/ehn-dcc-development/dcc-business-rules-analysis
https://htmlpreview.github.io/?https://github.com/ehn-dcc-development/dcc-business-rules-analysis/blob/main/analysis/vaccine-country-matrix.html
https://htmlpreview.github.io/?https://github.com/ehn-dcc-development/dcc-business-rules-analysis/blob/main/analysis/vaccine-specs-per-country.html
https://dcc-crosscheck.vercel.app/

CertLogic
Partial evaluation

Idea 
 Mark values in the ⟪data⟫ as Unknown 
 Modify evaluate function (“interpreter”) so it doesn't reduce an ⟪expr⟫ 
 that would produce Unknown (or any value that's not a CertLogic expression)

Usage 
 Partially evaluate and(⟪all Acceptance rules of a country⟫) against a DCC 
 payload with dt = Unknown to derive which vaccines are accepted, 
 and what their validity ranges are

DSL Consultancy

Analysing business rules
Using partial evaluation

DSL Consultancy

Demo: partial evaluation

Prescribing business rules
Things that went well

1) Short time-to-market In ~2 months from 0 to:

• CertLogic spec + implementations

• validation framework

• business rules published on EU DCC Gateway

• implemented in verifier apps

2) Small spec (and keeping it that way) Allowed quick implementation and controlled evolution,
but flexible enough to adapt to changing requirements

3) Versioning Versioned specification and implementations independently

4) Analysis Analysed rules using language engineering techniques

DSL Consultancy

Prescribing business rules
Things that could have gone better

1) Limited scope 
Only small part of entry regulations “fit” in validation framework, which was
hard to extend.

2) Adoption Not all countries participating in the EU DCC share their entry
regulations using the validation framework. Reasons:

i) Only small part of entry regulations covered - fear of “false positives”

ii) Writing business logic in JSON is tedious - a real DSL editor could help

DSL Consultancy

Prescribing business rules
Observation

Little variance 
Most countries' business rules are pretty similar. 
Was a language really necessary? 
Could a simple (but more “fluid”) configuration have worked as well?

DSL Consultancy

...probably not really...

The EU DCC
The future

Use of EU DCC is being ramped down - remaining work:

• Maintenance

• Make “shelf-ready”:

• Document what has been done

• Document what could be done 
(type system, more generic validation framework, better syntax + editor, ...)

• Use as “stepping stone” for e.g. new eHN initiatives (eID, ePrescription)

DSL Consultancy

Questions?

 

Thank you!

DSL Consultancy

